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Abstract
The dynamic hysteresis of the first-order phase transition around the transition
point Tc in ferroelectrics is studied by investigating the dynamic response of the
Landau–Devonshire (η2)3 model to a time-varying external field of frequency f
and amplitude E0. It is revealed that the single-loop hysteresis as obtained above
the upper critical point T + and below the absolute instability point T0 shows
dynamic behaviours very different from the double-loop hysteresis obtained
between Tc and T +. An extensive calculation reveals a power-law scaling for
hysteresis area as a function of E0, while no reliable power-law scaling for
the area as a function of f is available in the low- f regime. The scaling
for the double-loop hysteresis seems not to fall into the same class as single-
loop hysteresis. Furthermore, the power-law exponents, if any, are somewhat
temperature-dependent, but this dependence is very weak in the regime of low
E0 and high f .

1. Introduction

Hysteresis represents the intrinsic feature of dynamic non-equilibrium phase transitions in a
wide class of ferroic materials. In this paper, we are interested in the problem of dynamic
hysteresis that has been receiving attention not only for physical interests in the last decades.
Dynamic hysteresis originates from the dependence of the hysteresis on the frequency f and
amplitude E0 of the external field. Practically, high-speed memory and sensing applications
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where ferroic materials are employed require a comprehensive knowledge of the dynamic
hysteresis in these materials [1]. However, the problem of dynamic hysteresis was not
emphasized until the last ten years. For a detailed review of the latest progress on this topic,
refer to the review article of Chakrabarti and Acharyya [2]. On the other hand, the scaling
behaviour of the hysteresis dispersion characterizes the frequency or amplitude dispersion of
hysteresis area A, i.e. A( f ) at a fixed E0, or A(E0) at a given f . The earliest empirical
scaling behaviour is known as the Steinmetz law [3] for ferrites. Rao et al [4, 5] presented
a systematic study on the hysteresis dispersion in O(N → ∞)-symmetric (η2)2 and (η2)3

models at a temperature T far below the phase transition point Tc. A power-law scaling
for the dispersion against both f and E0 in either the low- f or high- f regime was argued.
Subsequently, different dispersions were identified for various models, where the Ising model
was chosen as the base for MFA (mean-field approach) studies [6–8] and MC (Monte Carlo)
simulation [4, 9–11]. Dhar and Thomas [12, 13] studied the hysteresis scaling in small systems
under a low field, and predicted that A( f ) over the low- f regime is logarithmic. The finite-size
scaling of the dynamic hysteresis was presented by Sides et al [14, 15], while Zhong and Zhang
employed renormalization-group theory to study the same problem [16]. A number of recent
works claimed that some scaling function of hysteresis such as A( f, E0) = Eα

0 f β exists,
although some critical works also argued the invalidity of such power-law scaling. Acharyya
and his co-workers [2, 17] took the thermal fluctuations into account and obtained a general
dispersion for T > Tc:

A( f, H0, T ) ∝ H a
0 T −m g

(
f

H c
0 T n

)

g

(
f̃ = f

H c
0 T n

)
∝ f̃ b exp(− f̃ 2/σ)

(1)

where m, n, a, b and c are the scaling exponents. For f → 0, equation (1) reduces to a power
law. The experimental data on several thin-film magnets [18–20] can be reasonably fitted by
equation (1) with variable exponents for various systems.

The main motivation of our work is to find the hysteresis behaviours in ferroelectrics of
the first-order phase transition around Tc, which benefits our understanding of the dynamics
of ferroelectric systems near the phase transition point but few reports have been found on this
subject. An earlier systematic work [21] on double hysteresis loops in ferroelectrics LiCsSO4

in general presented static aspects of this phenomenon.
To date, most works have focused on the dynamic hysteresis in spin systems at T � Tc,

and the static property related to hysteresis for the second-order phase transition. In the present
paper, the (η2)3 model was used to investigate dynamic hysteresis in ferroelectrics and general
first-order phase transition systems. A detailed study for both (η2)2 and (η2)3 models in a
three-dimensional continuous N-component system (N → ∞) at T � Tc was presented
by Rao et al [4, 5]. They argued that the scaling behaviour for both models is in the same
universality class, which may be true in case of T � Tc, because the dynamics for both can
be described by the domain reversal mechanism. Our main argument is that around Tc the
(η2)3 model may show essentially different behaviours from those at T � Tc because of the
complexity of free energy as a function of T and order parameter near Tc. We pay more
attention to the phenomena near or above Tc by considering the coexistence of two phases
(ferro- and paraelectric phases) which introduces the diversities of hysteresis loops induced by
external field and temperature.

The calculation of this paper reveals a scaling behaviour of single and double hysteresis
area as a function of E0 and f . No reliable power law was found for saturated double loops
in ordinary frequency and field. However, for high frequency or low field, the loop types
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(a)

(b)

Figure 1. Landau–Devonshire free energy potential. (a) Without external field: a, T –T +; b, T –Tc;
c, T –T0. (b) With external field.

are similarly non-saturated and the exponents are invariable and independent of temperature.
From the point of view of applications in high-speed ferroelectric memories, the invariable
scaling exponents for high frequency (with exponent β = −1.00) and low field (α = 2.00)
may be significant.

2. O(N = ∞)-symmetric (η2)3 model and numerical method

We begin this model from Landau–Devonshire theory [22] which applies to the case of weak
first-order phase transitions often identified for ferroelectrics. The free energy function takes
the following form:

�(T, η) = �0 + a(T − T0)η
2 + Bη4 + Dη6 + hη (2)

where a > 0, B < 0 and D > 0, η is the order parameter, referring to polarization for
ferroelectrics, T0 is the absolutely unstable limit of the disordered phase and h is the external
field. We use r = T − T0 to characterize temperature T . To study the temperature-induced
phase transition, we consider the case under zero field. Then, the potential energy as a function
of η at various T is plotted in figure 1(a). Without external field, one can obtain the minima
by setting ∂�/∂η = 0 and ∂2�/∂η2 > 0:

η0 = 0,

η± = ±
√

−B + [B2 − 3a D · (T − T0)]1/2

3D
.

(3)



8634 H Yu et al

The real value of η requires

T + = T0 +
B2

3a D
> T0. (4)

For T < T +, the free energy has three minima respectively at η = η0 and η±. By setting
� = �0, one has the first critical temperature Tc:

Tc = T0 +
B2

4a D
< T + (5)

which corresponds to the three equivalent minimum states of free energy at η = η0 and η±,
respectively. The thermodynamic stability depends on T , in a way described below.

(1) For T < T0 (r < 0), the disordered phase is absolutely unstable, and a(T − T0) < 0. The
system prefers the ordered phase with a double-well potential at nonzero η±. At η0, the
energy has a maximum, thus the formed hysteresis is a single loop.

(2) For T0 < T < Tc, the system has three free energy minima (wells), but the well bottom
at η± is lower than that at η0. The pattern of hysteresis remains single loop but deformed
a little.

(3) For Tc < T < T +, the free energy at η0 is lower than that at η±. The disordered phase
(η0 = 0) is preferred but the ordered phase (η±) still remain metastable. A double-loop
hysteresis is observed.

(4) For T > T +, the free energy no longer shows any minimum at η± and η0 = 0 remains the
uniquely stable state (disordered phase).

Figure 1(b) is the case considering the influence of an external field that breaks the
symmetry of the potential well.

The (η2)3 model is based on O(N) continuum generalization of the Heisenberg model
(N = 3) in the presence of a field [23]. The model was introduced earlier [4, 5], and here only
a brief description is given. The order parameter equation of motion takes the Langevin form:

∂ηα

∂ t
= −�

δF

δηα

+ ϕα (6)

with the Gaussian white noise satisfying

〈ϕα(x, t)〉 = 0,

〈ϕα(x, t)ϕβ(x ′, t ′)〉 = 2�δαβδ(x − x ′)δ(t − t ′)
(7)

where α, β = 1, 2, . . . , N , represent the orientation in the spin space, x is the spatial
coordinate, � is the mobility for the spin–lattice relaxation, F represents the free energy
under an external field, which can be written as

F =
∫

d3x

[
1

2
J (∇ηα · ∇ηα) +

r

2
(ηαηα) +

u

4N
(ηαηα)2 +

v

6N2
(ηαηα)

3 − √
N Eαηα

]
(8)

η is an N-component vector and J is the interaction between two components and u and v are
the prefactors of the nonlinear terms, which correspond to factors B and D in equation (2). The
phase diagram in the r–u plane can be found in [5], and here u = −25.59 and v = 105.28 are
taken if not noticed elsewhere. The external field is in the α = 1 direction, i.e., Eα = Eδα,1. In
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the N → ∞ limit, this infinite hierarchy of differential equations is truncated. We substitute
equation (8) into (6), and obtain the following coupled integrodifferential equations [5]:

dP(t)

dt
= 1

2
[A(t)P(t) + E(t)]

A(t) = −(r + u P2 + uS + vP4 + 2vP2 S + vS2)

S(t) = 1

2π2

∫ 1

0
q2C⊥(q, t) dq

d

dt
C⊥(q, t) = −[q2 − A(t)]C⊥(q, t) + 1

E(t) = E0 sin(2π f · t)

(9)

where P is along the α = 1 direction, and C(q, t) is the correlation function which has the
transverse component C⊥(q, t) (α �= 1) and longitudinal component C11(q, t) (α = 1):

M(t) = 〈�1(q, t)〉,
C⊥(q, t) = 〈�α(q, t)�α(−q, t)〉, α �= 1,

C11(q, t) = 〈�1(q, t)�1(−q, t)〉.
(10)

In our simulation, a = 1, B = u = −25.59, D = v = 105.28, rc = Tc − T0 =
B2/(3a D) = 1.55 and r+ = T + − T0 = B2/(4a D) = 2.07. Under the static limit, the
double loop is generated within 1.55 < r < 2.07, but the upper limit of r will be higher than
r+ = 2.07 if a nonzero E is applied, noting that the values of E0 and f for our simulation only
have relative significance.

When a non-zero E is applied, the symmetry of the free energy is broken. If E is time
varying, the dynamics becomes more complex, to be discussed in section 4. The dynamic
hysteresis originates from the broken symmetry of the system free energy.

3. Simulation results and hysteresis scaling

3.1. Shape evolution of dynamic hysteresis

The pattern and area of the dynamic P–E loop are functions of T , f and E0. Consequently,
one understands that the scaling behaviours depend on the three variables. The pattern of
hysteresis, single or double, depends on T , whilst the area is dependent on f and E0 at a fixed
T . It is understood that a low f and high E0 benefit a saturated loop. A lower f means that
the system has enough time to respond to the oscillating E , while a high E0 switches more
domains and hence enlarges the enclosed curves.

For T < Tc, the static hysteresis should be a single loop. The system at extremely low f
has enough time to reach the lowest free energy state. The loop is pinched along the E axis and
shows a jump from the +η state to the −η state or vice versa. With increasing f , the pinched
loop becomes more saturated and squarish. Correspondingly, the coercivity increases. Given
a fixed E0, the loop shape at high f is an inclined ellipse. As f → ∞, the loop shrinks rapidly
along the η-axis and the loop area decays rapidly. As an example, several loops calculated at
different values of f are presented in figure 2.

For Tc < T < T +, the system has three free-energy minima, whilst a double-loop
hysteresis is generated at relatively low f . When f increases, the double-loop evolves into a
dumbbell-like loop. The coercivity Ec and loop area A augment with lifted f . Area A becomes
decaying if f is further increased, leaving a maximum that corresponds to a resonant frequency.
At extremely high f , the loop becomes an ellipse and finally shrinks into an inclined straight
line. Figure 3 shows the double-loop patterns, and it is noted that loop (c) is a dumbbell-like
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Figure 2. Single-loop hysteresis (T < Tc), r = 1 and E0 = 1. (a) f = 0.001; (b) f = 0.01;
(c) f = 0.1; (d) f = 10.

Figure 3. Double-loop hysteresis near Tc (Tc < T < T +), r = 2 and E0 = 0.5. (a) f = 0.001;
(b) f = 0.01; (c) f = 0.1; (d) f = 10.

one. Whether the loop is double is determined by whether η0 is the minimum when the external
field cycles through E = 0.
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Figure 4. Hysteresis loops at high temperature (T > T +), r = 5 and E0 = 3. (a) f = 0.01;
(b) f = 0.1; (c) f = 1; (d) f = 10.

Figure 5. Hysteresis loops under various E0 as labelled, r = 2 and f = 0.1.

For T > T +, the high-temperature disordered phase is in the absolutely stable state. The
system has one minimum at η0, and falls into the paraelectric state, producing a thin and slight
loop as shown in figure 4.

In figure 5, we present the hysteresis loops obtained under various E0 at r = 2 and
f = 0.1, as a demonstration of field-dependent shape evolution. We observe that the loop is
minor at relatively small E0 = 0.2, and becomes saturated at E0 = 0.5 and more squarish at
E0 = 1.5. The loop at E0 = 0.5 is a dumbbell-like one, which is a transition pattern between
single and double ones. This loop will evolve into a single loop with increasing E0 and a
double loop with decreasing f (as shown in figures 3(a)–(c)).

From the results above, we conclude that
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(1) the loop shape at extremely high f remains unsaturated and similar for different regions
of temperature, because the system cannot respond to the quickly oscillating field, and

(2) for very small E0, the loop is not saturated, known as a minor loop, which is predicted to
obey different scaling laws.

3.2. Scaling behaviours of hysteresis dispersion

Given a system where r , u and v are fixed, the hysteresis area A is a function of f and E0,
i.e. A = A( f, E0). As mentioned earlier, a scaling law of the form A ∝ Eα

0 f β has often been
claimed in previous studies. It is essential to check whether this relationship exists or not for
the dynamic hysteresis in first-order phase transitions over a broad temperature range covering
the critical points defined above. As T � T0, the power-law scaling with α = 2/3 and
β = 1/3 has been widely confirmed [4, 5]. We pay more attention to the region of two-phase
coexistence.

In this simulation, the temperature regimes and the ranges of f and E0 are wide enough
for our investigation to cover all the possibilities of hysteresis. The cases of higher or lower
external field and frequency were examined but no new types were found and the shape of the
hysteresis loops does not evolve.

Given fixed r and E0, area A shows a significant frequency dispersion,which is determined
by the competition between the system relaxation time and period of the oscillating field. We
present log–log plots in figure 6 of the calculated frequency dispersions. Clearly, no strict
universal power law is found at extremely low f (<10−3). As f is not very low, we may
roughly use a linear fit on the log–log plots over the data on both sides of the mutation point
at which A( f ) reaches its maximal value, and an exponent β if any is obtained, although this
fitting is not very reliable.

Over the low- f range ( f = 10−3–10−1), β > 0 is temperature dependent. In the range
T0 < T < Tc, where the hysteresis is a single loop, the dispersion, as shown in figure 6(a),
exhibits an exponent β = 0.47 ± 0.02. The linear fit over this range is fairly good, because
T is below Tc and more similar to the case at low T . For Tc < T < T +, the hysteresis takes
a double-loop pattern, as shown in figure 6(b), no linear relationship and hence no power law
if f < 1. We argue that the fluctuations at the phase transition point are responsible for the
deviation from the simple power law. For T > T +, the loop shrinks into a very thin one.
Although the area is small, the dispersion still has an exponent β = 1.00 ± 0.02 for r = 5 as
shown in figure 6(c) and the same value for r = 7 in figure 6(d). The loop at high T is inclined
to be unsaturated, which can be more easily enlarged by increasing f , hence β is large. Our
extensive calculations show that the power-law exponent β, if any, increases as T increases.
No universal power law exists for low f over the broad range of T around Tc.

However, over the high- f range where A( f ) falls with increasing f , a reliable power law
with exponent β = −1.05 ± 0.04 independent of T and E0 is always obtained, confirmed
by our extensive calculation covering the wide T -range from T � T0 to T > T +. Note that
β = −1.0 at T � T0 was confirmed in previous studies [4, 5]; one may argue that a universal
frequency power-law scaling applies for the high- f regime. The reason for this universal
scaling is related to the fact that the system at any local potential well has a relaxation time
longer than 1/ f so that A( f ) is basically dominated by the dynamic response of the system
far from the equilibrium state.

The dependence of A on E0 at a given f was also investigated, as shown in figure 7. A
large number of A(E0) at given f were calculated and four of them ( f = 0.01, 0.1, 10, 100)
are chosen here to show the main features. Because A( f ) increases first and then decreases
with increasing f , the curves A(E0) in figure 7 may cross each other. In general, A(E0) as
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Figure 6. Log–log plots of hysteresis area against frequency f . (a) r = 1; (b) r = 2; (c) r = 5;
(d) r = 7.

an increasing function of E0 shows clean linear behaviours in the log–log plots, and there is a
mutation point (Et , A(Et)) for each curve, at which the slope of A(E0) changes from a small
value at E0 < Et to a larger one at E0 > Et . More interesting, one finds that all A(E0) straight
lines at E0 < Et and E0 > Et in the log–log plots keep parallel to one another, respectively.
This means the same slope and hence the same exponent α for all A(E0) at E0 < Et and
E0 > Et , respectively, independent of f .
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Figure 7. Log–log plots of hysteresis area against amplitude E0. (a) r = 1; (b) r = 2; (c) r = 5.

In figure 7, as E0 < Et , the loops are minor and unsaturated, while the loops at E0 > Et

are well saturated. At an extremely low amplitude E0, the generated loop is unsaturated and
irregular. With increasing E0, A(E0) grows rapidly, exhibiting an exponent α = 2.00 ± 0.10
(slope of the straight line at E < Et ). It is shown that this exponent does not change for
different T and f . As E0 > Et , the loop is well saturated and a further increasing E0 does
not enhance the remnant polarization much beside enlarging the coercivity, so that exponent α
decreases, jumping down from 2.00 to 0.50–0.67. Therefore, Et can be viewed as the critical
amplitude for the complete domain reversal. In contrast, a full domain reversal cannot be
achieved if E0 < Et . Et is dependent on f , which shifts toward a higher value as f increases.
The lower T and lower f benefit saturation of the loop and make Et smaller. If f → ∞,
the loop is far from saturation but takes an ellipse pattern, hence Et → ∞. In such a case,
α ≡ 2.00.

However, in the case of high E0 where the loop is well saturated, the case is more
complicated. Here, α refers to the slope of the straight line at E > Et . For 0 < r < rc,
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Table 1. Shape evolutions and scaling behaviours of hysteresis in the first-order (η2)3 system.

Et is very small for f = 0.01 and 0.1 because r is low, as shown in figure 7(a). The hysteresis
is single looped and α = 0.50 ± 0.04. For rc < r < r+, as shown in figure 7(b), the hysteresis
is double looped and α = 0.64 ± 0.02. For r > r+, as shown in figure 7(c), α = 0.80 ± 0.10.
In short, for a low E0 and minor loop, α keeps constant in any temperature regime, but different
values of α are obtained in different temperature regimes. A lower r benefits the ordered phase,
thus favouring a squarish and saturated loop pattern. Therefore, the area increases more slowly
and exponent α is lower at lower r .

The evaluated exponents α and β over various ranges of f and E0 in different temperature
regimes are summarized in table 1.

3.3. Remarks on the scaling

We have demonstrated the existence of constant exponents (α = 2.0 and β = −1.0) in the
regime of low E0 and high f , the origin of which is the similar minor loop pattern in these
two cases. Apart from this regime, the hysteresis may take different loop patterns, from the
single loop, double loop and even dumbbell-like loop over wide ranges of r , E0 and f . The
power-law scaling if any is temperature dependent. Basically, no strict power-law scaling is
found for these regimes, although we may still use the power law to scale the dynamics, in
the approximate and qualitative senses. These results show clearly that the scaling behaviours
of the hysteresis near Tc may not belong to the same generality class as those at much lower
temperature. In particular, one understands that the scaling if any for the double-loop hysteresis
is very different from the single-loop hysteresis.
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Figure 8. Mechanical analogy and dynamic double-well of free-energy potential (reproduced
from [4]). (a) t < 0; the particle is in the η+ minimum; (b) t > 0; the particle returns to the η+
minimum and then attempts to hop over the barrier; (c) the particle crosses the barrier and then
back to the η− minimum.

4. Discussion and experimental relevance

4.1. Discussion

The dynamic hysteresis can be understood though a dynamic potential-well model. The state
stability for a system is determined by the free energy potential. For a single-loop hysteresis,
the free energy has two wells, but three wells exist for the double-loop hysteresis. It can be
predicted that the hysteresis may exhibit N − 1 close windows if the free energy as a function
of order parameter has N potential wells.

Rao et al [4] presented a mechanical analogy based on a double-well potential to illustrate
the dynamical processes of the spin system in response to a time-varying field. Three
characteristic scales of relaxation time were brought out to investigate the relationship of
magnetization reversal and external field, as shown in figure 8. The symmetry of the free
energy is broken by the applied external field, and the potential wells become inequivalent.
For the (η2)3 model, there are two global minima below T0, and the system has a similar
behaviour as the (η2)2 model. For T0 < T < Tc, the three wells located respectively at η0

and η± are not equivalent to each other and the loop is still a single one. For Tc < T < T +,
the triple-well pattern can be treated as two asymmetric double wells, so that the double-loop
hysteresis can be regarded as a combination of two single loops.

For a typical double loop, a mechanical analogy for the dynamic hysteresis is shown in
figure 9. If an initial stable state at time t = −T/4 < 0 is assumed, where T is the period
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Figure 9. Dynamic triple wells of free-energy potential: (a) initial state, particle is in the η+ well
and then amplitude decays, the particle attempts to hop the barrier to the state η0; (b) t = 0, E = 0,
the particle falls into the η0 well; (c) the applied field reverses and the well at η− becomes deeper
and then the particle crosses the barrier between η0 and η− and falls into the η− well.

of the external field, E = E0 sin(2π f · t) = −E0 is at the amplitude value and along the
+η direction. For −T/4 < t < 0, the absolute value of E decreases from E0, the difference
between ±η becomes smaller and the well at η0 becomes deeper. At t = 0 and E = 0, if the
system has long enough to relax, the well at η0 is preferred. The time that the system stays in
the disordered state is determined by f . Half of the loop window between +η and η0 is formed.
Subsequently, the minimum at −η becomes the global minimum. At t = T/4 and E along
−η, the well at −η becomes the deepest, which leads to formation of the other loop covering
η0 and −η. When one period is cycled, the same two windows are formed, constituting a
double loop.

From the kinetic point of view, the dynamic hysteresis is related to a competition of two
timescales: one is the period of the oscillating field and the other is the system relaxation time.
Both of them determine the time during which the system stays in the stable state. Given an
E0, the energy gap between the neighbouring wells remains unchanged. If the oscillating field
sweeps too quickly and the system has not enough time to respond to it, a transfer between
two neighbouring wells becomes kinetically difficult, leading to a single-loop hysteresis. If
the period of the field is equivalent to or longer than the relaxation time, the transfer among the
wells is always possible. However, which one of the three wells will be chosen depends on f .
If f is very small, the system is quasi-static and has enough time to relax to the lowest-energy
well. Otherwise, the limited time does not allow the system to transfer towards the lowest well
through the meta-stable states. This is the reason why we see the very different loop shapes
for different frequencies. On the other hand, an expansion of the free energy to a higher order
than sixth will bring more potential wells and multi-loop hysteresis.
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The physics underlying the very different scaling behaviours between (η2)2 and (η2)3

models can be explained using the above picture in a qualitative sense. For the (η2)3 model,
there is a coexistence of two phases around Tc, which can be easily seen from the potential
well of free energy. The existence of the disordered phase makes the area of the loop, say, the
energy loss of the hysteresis in the triple-well potential system, have a different scaling law.
With increasing T , the disordered phase plays a more important role, and there is a transition
between ordered and disordered phases under the time-varying field. Because the disordered
phase exhibits a very thin loop, the loop area will grow at a fast rate with increasing f , resulting
in larger scaling exponents at higher temperature. However, as a comparison, a single loop
with double wells only has a transition among ordered phases, so the exponent is smaller at
lower temperature.

4.2. Experimental relevance

The dynamic hysteresis of ferroelectrics and the domain reversal problem have been given more
attention from the experimental point of view. Liu et al [24, 25] studied the scaling behaviour
of hysteresis dispersion though both model simulation and experiment for Pb(Zrx Ti1−x )O3

(PZT) at room temperature (far below Tc). The results fit A ∝ E0.66 f 0.33 and represent the
behaviour of a single loop far below Tc for a first-order phase transition system.

The experiment on double hysteresis for BaTiO3 was first reported in 1953 [26]. A
typical shape evolution of static hysteresis with respect to increasing temperature above Tc

was investigated. Systematic comments on the double hysteresis loop in ferroelastic LiCsSO4

were made on static aspects by Tuszynski et al [21]. It is interesting to note the similar values
of the scaling exponents between our results near Tc and the antiferroelectric (AFE) double
hysteresis loop reported in [27], where power laws AH ∝ (E0 − Ec)

0.5 f 0.4 for AFE double
loops and Am ∝ (E0 − Ec)

2.1 f 0.28 for minor loops are given. In section 3, we have presented
the scaling exponents for E0 as 0.5–0.67 at high E0 and 2.0 at low E0. The reason for the
similarity, we argue, lies in the fact that AFE also has a triple-well potential, which is very
like the potential for Tc < T < T + in our work. That is, at η0 = 0 the system has a minimum
and at η± it has two higher minima. For FE η0 = 0 corresponds to a disordered phase, but
for AFE this means an antiferroelectric phase. Although they have quite different physics, the
similar free energy potential determines that their hysteresis loss obeys a similar law.

5. Concluding remarks

The dynamic hysteresis in ferroelectric first-order phase transitions near the phase transition
point Tc has been studied by an extensive investigation of the hysteresis pattern evolution
and scaling behaviours of the (η2)3 model system over wide ranges of both frequency and
amplitude of the oscillating external field. In particular, the scaling behaviours of the double-
loop hysteresis around Tc have been studied in detail. It has been demonstrated that there is
no reliable power-law scaling for the hysteresis area as a function of frequency in the low-
frequency regime, while the hysteresis over the high-frequency regime shows a power-law
scaling with a frequency exponent β = −1.0, independent of temperature. For the scaling
of the hysteresis as a function of field amplitude, the power law has been confirmed and the
amplitude exponent α = 2.0 is found for minor loops at small field, although for the saturated
loop this exponent takes different values in different temperature regimes. The scaling for the
double-loop hysteresis belongs to a generality class different from the single-loop hysteresis,
while the dynamics of hysteresis around the phase transition point Tc also differs from that at
a temperature far below Tc. The temperature-induced and field-induced phase transitions and
two-phase coexistence around Tc cause this distinct difference and complexity. The present
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study is valuable for us to understand the non-equilibrium dynamic phenomena near the phase
transition point.
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